Intracellular Proton Regulation of ClC-0
نویسندگان
چکیده
Some CLC proteins function as passive Cl(-) ion channels whereas others are secondary active chloride/proton antiporters. Voltage-dependent gating of the model Torpedo channel ClC-0 is modulated by intracellular and extracellular pH, possibly reflecting a mechanistic relationship with the chloride/proton coupling of CLC antiporters. We used inside-out patch clamp measurements and mutagenesis to explore the dependence of the fast gating mechanism of ClC-0 on intracellular pH and to identify the putative intracellular proton acceptor(s). Among the tested residues (S123, K129, R133, K149, E166, F214L, S224, E226, V227, C229, R305, R312, C415, H472, F418, V419, P420, and Y512) only mutants of E166, F214, and F418 qualitatively changed the pH(int) dependence. No tested amino acid emerged as a valid candidate for being a pH sensor. A detailed kinetic analysis of the dependence of fast gate relaxations on pH(int) and [Cl(-)](int) provided quantitative constraints on possible mechanistic models of gating. In one particular model, a proton is generated by the dissociation of a water molecule in an intrapore chloride ion binding site. The proton is delivered to the side chain of E166 leading to the opening of the channel, while the hydroxyl ion is stabilized in the internal/central anion binding site. Deuterium isotope effects confirm that proton transfer is rate limiting for fast gate opening and that channel closure depends mostly on the concentration of OH(-) ions. The gating model is in natural agreement with the finding that only the closing rate constant, but not the opening rate constant, depends on pH(int) and [Cl(-)](int).
منابع مشابه
Relationship between intracellular pH and chloride in Xenopus oocytes expressing the chloride channel ClC-0.
During maturation of oocytes, Cl(-) conductance (G(Cl)) oscillates and intracellular pH (pH(i)) increases. Elevating pH(i) permits the protein synthesis essential to maturation. To examine whether changes in G(Cl) and pH(i) are coupled, the Cl(-) channel ClC-0 was heterologously expressed. Overexpressing ClC-0 elevates pH(i), decreases intracellular Cl(-) concentration ([Cl(-)](i)), and reduces...
متن کاملFunctional coupling of chloride–proton exchanger ClC-5 to gastric H+,K+-ATPase
It has been reported that chloride-proton exchanger ClC-5 and vacuolar-type H(+)-ATPase are essential for endosomal acidification in the renal proximal cells. Here, we found that ClC-5 is expressed in the gastric parietal cells which secrete actively hydrochloric acid at the luminal region of the gland, and that it is partially localized in the intracellular tubulovesicles in which gastric H(+)...
متن کاملProbing the Pore of ClC-0 by Substituted Cysteine Accessibility Method Using Methane Thiosulfonate Reagents
ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pore...
متن کاملProton transport pathway in the ClC Cl-/H+ antiporter.
A fundamental question concerning the ClC Cl-/H+ antiporters is the nature of their proton transport (PT) pathway. We addressed this issue by using a novel computational methodology capable of describing the explicit PT dynamics in the ClC-ec1 protein. The main result is that the Glu203 residue delivers a proton from the intracellular solution to the core of ClC-ec1 via a rotation of its side c...
متن کاملRole of the AtClC genes in regulation of root elongation in Arabidopsis
The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 132 شماره
صفحات -
تاریخ انتشار 2008